Use Of Molasses As Carbon Source In Limited Discharge Grow-out Systems For Litopenaeus vannamei

T. M. Samocha¹, S. Patnaik¹, J. M. Burger¹, R. V. Almeida¹, A. M. Ali², Z. Ayub¹, M. Harisanto¹, A. Horowitz³, and D. L. Brock⁴

¹TAES, Shrimp Mariculture Research Facility, Corpus Christi, TX ² UNM, Earth & Planetary Sciences Department, Albuquerque, NM ³ UPAH Tec. Shaker Heights, OH ⁴ Rangen Inc., Buhl, ID

Introduction

- Increased environmental regulations and loss of crops due to viral disease outbreaks have created a demand for more sustainable shrimp production practices
- ➤ These methods call for raising the shrimp under limited water exchange with careful monitoring of water quality
- ➤ Feed, feed management, and water treatment of the culture systems can affect water quality and consequently the shrimp performance
- Thus, optimization of protein utilization and manipulation of microbial communities can improve water quality and shrimp yields while reducing feed costs

Introduction

- ➤ Findings by several researchers suggest that autotrophic and heterotrophic microbial communities play a major role in limited discharge intensive shrimp culture systems, particularly in maintaining optimum water quality, enhancing natural productivity and nutrient cycling
- Other studies suggest that detritus-rich water from limited discharge systems can enhance shrimp growth
- ➤ Beside the nutritional benefit from bacterial flocs, the use of carbon (C) supplementation was suggested as a management tool to control nitrogen species buildup in the culture medium

Objectives

Evaluate the effect of carbon supplementation during the nursery and grow-out phases on water quality and the performance of *Litopenaeus vannamei* under limited water discharge conditions

Materials and Methods

- ➤ Nursery study was conducted in four 40-m³ greenhouse-enclosed raceways, while grow-out trial were conducted in twenty-four outdoor 7.9-m³ tanks and in two 2,000-m³ lined ponds at the TAES, Shrimp Mariculture Research Facility, Corpus Christi, Texas
- ➤ All three systems were operated with limited discharge
- ➤ Poor survival in the ponds due to *Vibrio harveyi* outbreak precluded evaluation of the carbon supplementation on WQ and shrimp performance

Materials and Methods - Nursery

- \gt A 58-d trial in four RWs stocked at 1,800 PL₉₋₁₂/m³
- > All RW's were equipped with pressurized sand filters
- ➤ Two RWs were provided with foam fractionators and were operated with 1.53% daily water exchange
- The other two RWs had no FF and were operated at 2.62% daily water exchange
- ➤ Shrimp were fed mostly 45% CP diet (Rangen Inc., Buhl, Idaho), distributed four times a day seven days a week

Materials and Methods - Nursery

- > DO, temp., pH and salinity twice daily
- ➤ Turbidity, settleable solids, and algal counts once daily
- > NH₄-N & NO₂-N daily from day 31 on
- ➤ cBOD₅, reactive phosphorous, TSS, VSS weekly
- ➤ Molasses (24% C) was added (starting 31 days after stocking) only when NH₄-N levels were > 1 mg/L (assuming 6 g C is needed to convert 1 g of NH₄-N to bacterial biomass)

Materials and Methods – Grow-out

- > A 84-day trial in twenty-four 10.5-m² (7.9-m³) tanks
- ➤ Tanks were filled with chlorinated seawater (30 ppt), positioned under a shade and provided aeration from 10 airstones/tank (6-8 L/min/stone)
- > Stocking: 81 juveniles/m³ (6.2±0.3 g)
- > Use of two commercial diets made by Rangen;
 - "30% Eco", a cost-effective 30% CP diet, and
 - A regular 45% CP diet (fed at iso-N to the 30% diet)
- > Feed was distributed four times daily seven days a week

Tank Study - Experimental Design

Treatment ID	n	CP (%)	C	Ico Ni	Assumed		Dation
				180-1N	(g/wk)	FCR	Ration
30% Eco-0%	4	30	0%	-	1	1:1.5	100%
30% Eco-50%	4	30	50%	-	1	1:1.5	100%
30% Eco-100%	4	30	100%	-	1	1:1.5	100%
30% Eco-150%	4	30	150%	-	1	1:1.5	100%
30% Eco-adj	4	30	Adj.	-	1	1:1.5	100%
45% -100%	4	45	100%	+	1	1:1	66.6%

Diets & Feed Management – Grow-out

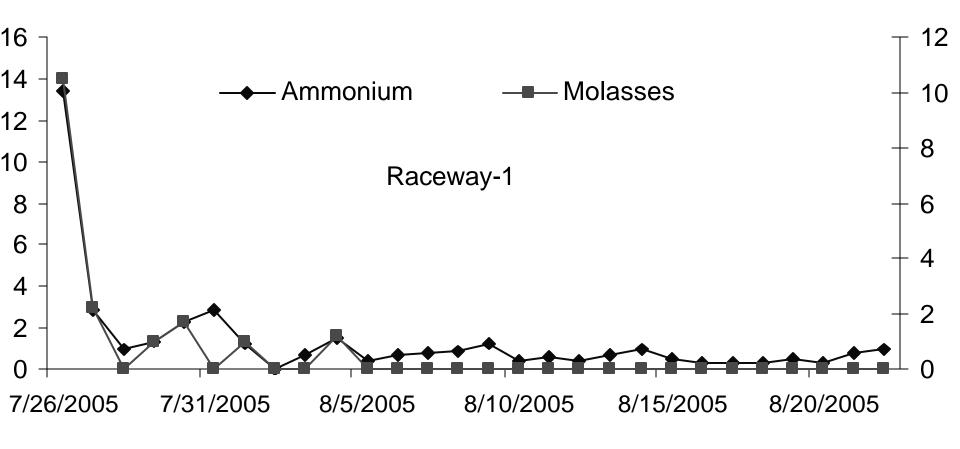
- ➤ Molasses was provided at 0%, 50%, 100%, and 150% of the estimated carbon needed to convert the NH₄-N into bacterial biomass assuming 50% of the nitrogen contributed by the feed is converted into ammonium-N
- ➤ Carbon supplementation levels in the adjustable treatment (Raceways & Tanks) were based on the actual NH₄-N concentrations in the water assuming the conversion of 1 g of NH₄-N into bacterial biomass requires 6 g of carbon

Calculation & Assumptions – Carbon Supplementation

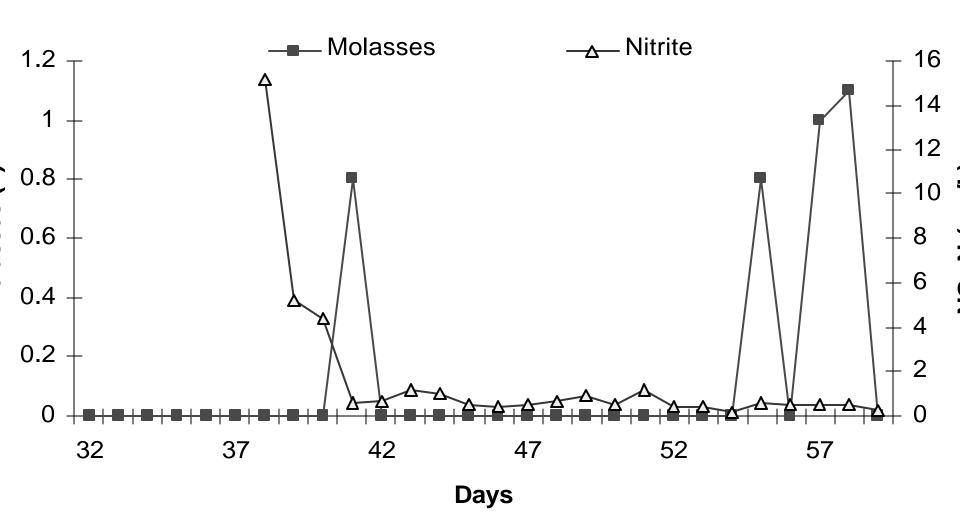
- 1. A 100 g ration (30% CP) = 4.8 g N (30 g / 6.25) = 2.4 g NH₄-N (4.8 g/2)
- 2. To convert 2.4 g NH₄-N into bacterial biomass, 14.4 g C is needed (2.4 g x 6 g)
- 3. The 50%, 100% & 150% C supplementation treatments received daily application of: 7.2 g, 14.4 g & 21.6 g C, respectively
- 4. 1,000 ml molasses = 1,300 g = 312 g C (1,300 x 24%)
- 5. 14.4 g C requires 46.15 ml of molasses (1,000 x 14.4 / 312)
- 6. Adjustable treatment received daily C application based on actual NH₄-N level in the tanks provided NH₄-N > 1 mg/L

Materials and Methods – Grow-out

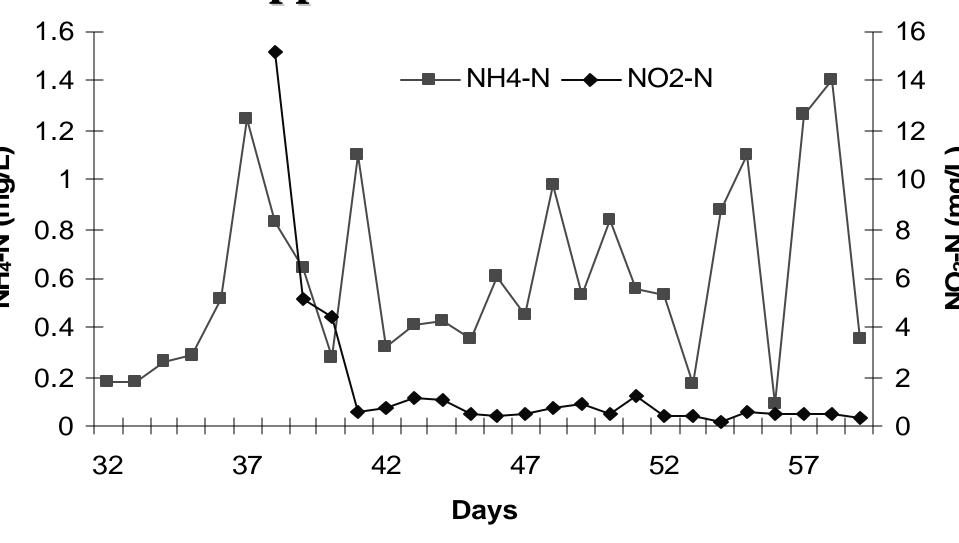
- > DO, temp., pH and salinity twice daily in all tanks
- > NH₄-N, NO₂-N: daily in all tanks from day 26 on
- ➤ cBOD₅, COD, TSS, VSS, turbidity, reactive phosphorous (RP), settleable solids (SS), & algal counts weekly in all tanks
- > Except for emergency releases due to heavy rains, no water was discharged from the tanks
- > Municipal freshwater was added to compensate for evaporation and to maintain salinity
- > The study was terminated prematurely due to hurricane Rita


Materials and Methods

- > Data were analyzed using SPSS software
- \triangleright A significance level of α =0.05 was used for all tests
- ➤ Repeated Measures ANOVA to identify differences between treatments in daily and weekly WQ
- ➤ One-way ANOVA to identify differences between treatments for survival (arcsine transformed), mean final weight and FCR followed by LSD and SNK tests



Molasses Supplementation & NH_4 -Nursery


Molasses can be used to control NH₄-N in nursery RWs with limited discharge

Relationship Between Molasses & NO₂-N - Nursery

Changes in NH₄-N & NO₂-N Due To Application Of Molasses

Results-Nursery

FF³ 51 3.5 4.0 4.7 126 72 1.5 39 403

³ 2005 results: RWs operated with FF (71-d, 2.89%/d, 3,600 PL/m³)

Litopenaeus vannamei Performance In A 58-d Nursery Trial In Greenhouse-enclosed Raceways Operated With Different Water Exchange Rates

Treatment	Wt _o (mg)	Wt _f (g)	Yield (kg/m ³)	Survival (%)
$\overline{FF^1}$	20	1.32	0.36	12.6 *
FF^1	20	1.74^{a}	2.96^{a}	92.5 ^a
WE^2	20	2.01^{b}	3.14^{b}	85.3a
WE^2	20	1.99^{b}	3.73^{b}	99.5 ^a
FF^3	0.6	1.91	6.79	100

¹ Raceway operated with 1.53% daily water exchange

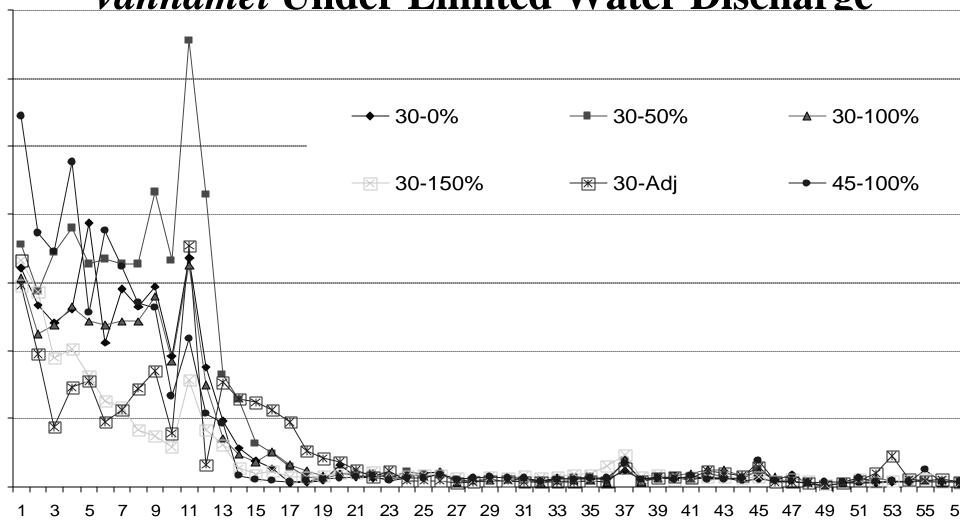
^{*} Mortality due to mechanical failure

² Raceway operated with 2.62% daily water exchange

³ 2005 results: RW's operated with FF (71-d, 2.89%/d, 3,600 PL/m³)

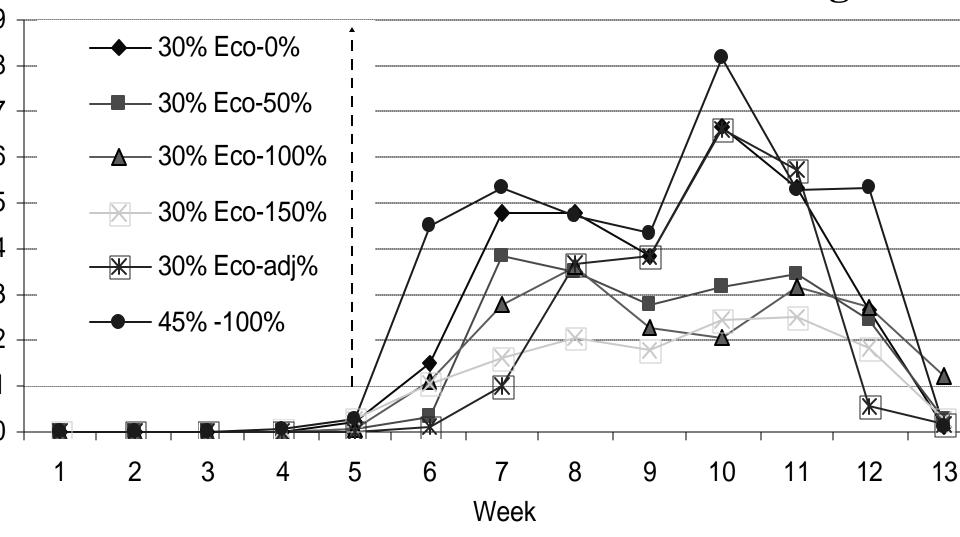
Results – Grow-out

Before adding the molasses:

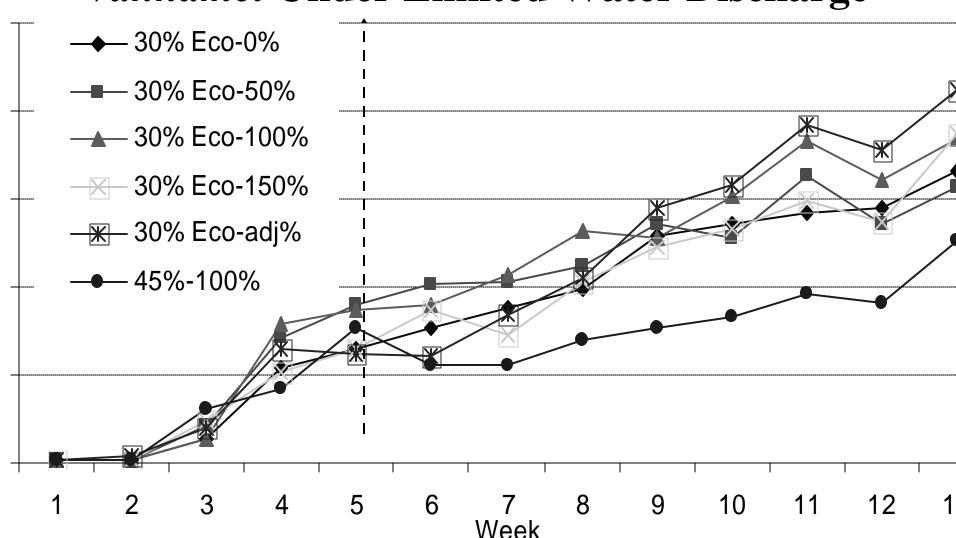

- ➤ No statistically significant differences were found between all treatments in nitrite, RP, COD, cBOD₅, SS & algal counts
- ➤ The NH₄-N and turbidity levels in the 45% CP treatment were statistically significantly higher than all other 30% CP diet treatments except for the 30% Eco-150% treatment

Results – Grow-out

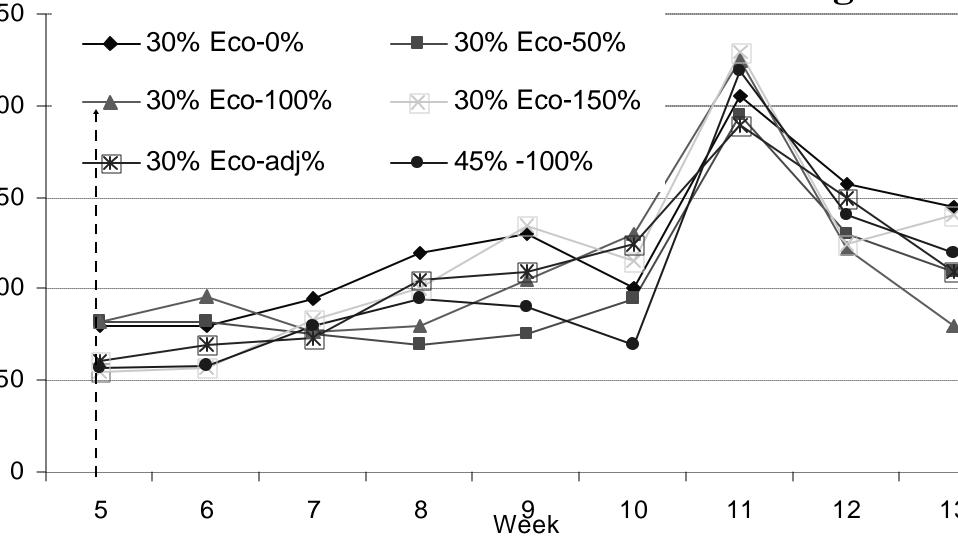
After adding the molasses

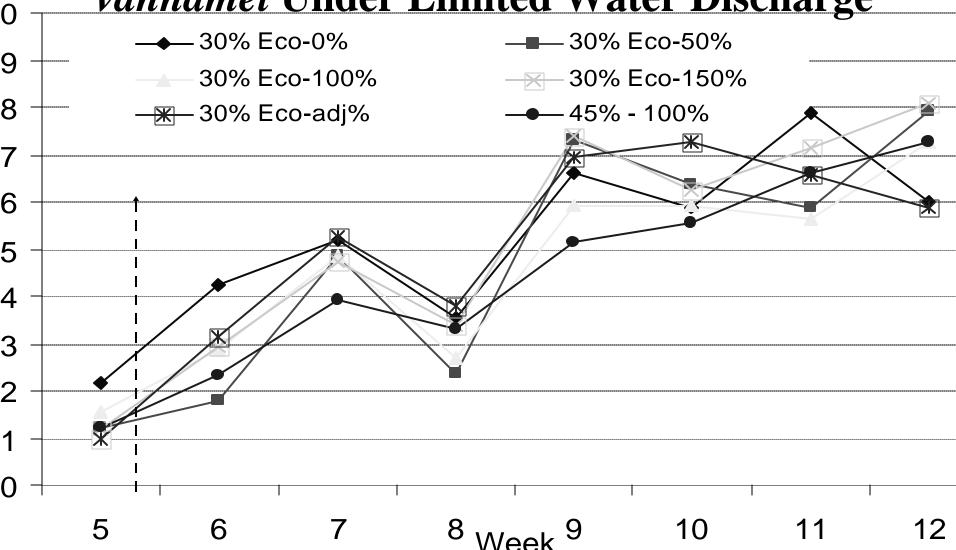

- ➤ The SNK test showed no statistically significant differences in daily NH₄-N levels between treatments
- ➤ The RP levels in the 45%-100% were significantly lower than all other 30% treatments
- ➤ The NO₂-N levels in the 45%-100% were significantly higher than the 30% Eco-150% treatment only
- ➤ Turbidity of 30% Eco-adj treatment was significantly lower than all other treatments, in addition, the 45%-100% treatment was significantly higher than 30% Eco-100% treatment
- ➤ No significant differences were found between all treatments in COD, cBOD₅, TSS, VSS, SS & Algal counts

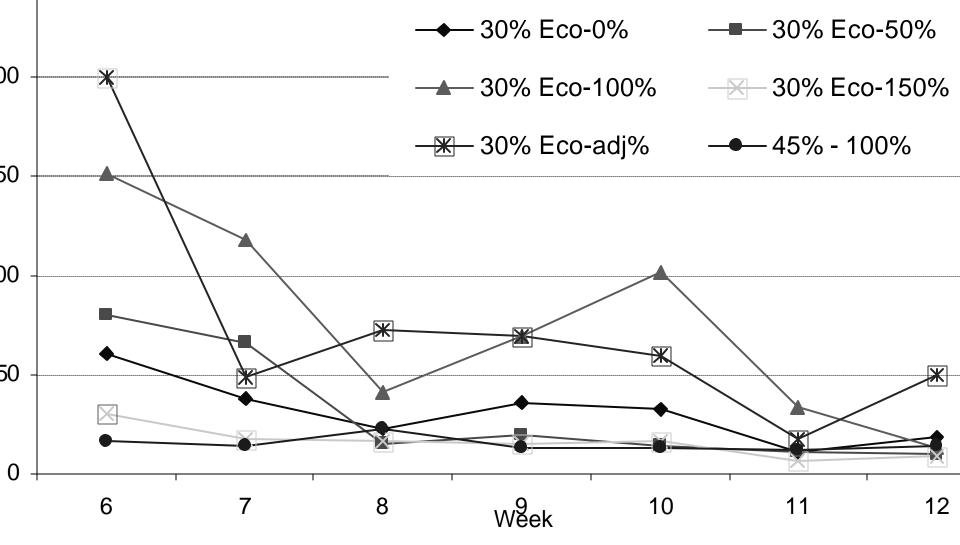
Changes in NH₄-N Levels With & Without Molasses Applications In Tanks Stocked With *Litopenaeus vannamei* Under Limited Water Discharge

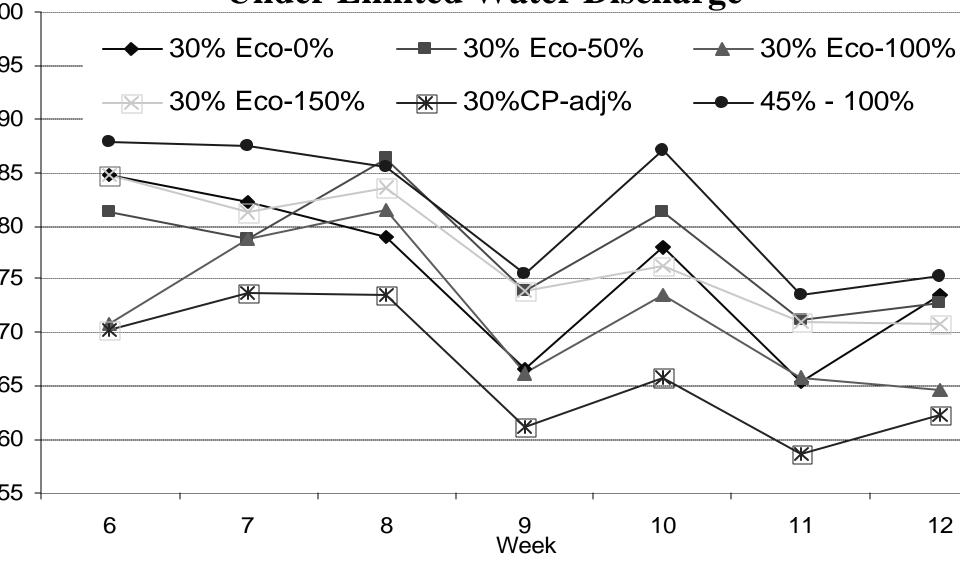


Days


Changes In NO₂-N Levels With & Without Molasses Applications In Tanks Stocked With *Litopenaeus vannamei* Under Limited Water Discharge


Changes In RP Levels With & Without Molasses Applications In Tanks Stocked With *Litopenaeus* vannamei Under Limited Water Discharge


Changes In TSS Levels With & Without Molasses Applications In Tanks Stocked With *Litopenaeus* vannamei Under Limited Water Discharge


Changes In SS Levels With & Without Molasses
Applications In Tanks Stocked With Litopenaeus
vannamei Under Limited Water Discharge

The Effect Of Different Levels Of Molasses On Algal Counts In Tanks Stocked With Litopenaeus vannamei Under Limited Water Discharge 50 ◆ 30% Eco-0% ■— 30% Eco-50% 00 **▲** 30% Eco-100% 30% Eco-150% ★ 30% Eco-adj% 50

Changes In Turbidity Levels With & Without Molasses Applications In Tanks Stocked With Litopenaeus vannamei Under Limited Water Discharge

Results – Grow-out

- ➤ No significant differences in shrimp survival between treatments
- ➤ The SNK test showed significantly higher mean weekly growth & final weights of the shrimp fed the 30% CP diet than the shrimp fed the 45% CP
- ➤ No statistically significant differences were found between the 30% CP diet treatments in shrimp mean weekly growth, final weights, yields, FCR and survival

The Effect Of Molasses Applications And Diets (35% & 45% CP) On *Litopenaeus vannamei* In Tanks System Operated With Limited Water Discharge

Treatment CP–Ration	N	Av. Wt _f (g)	Yield (kg/m³)	Sur. (%)	Growth (g/wk)	FCR	N. Water (%/day)
30% CP-0%	4	16.4a	0.79^{a}	99.0a	0.89^{a}	1.68a	
30% CP-50 %	4	17.8a	0.70^{a}	86.5a	1.02a	2.04^{a}	
30% CP-100 %	4	16.7a	0.76a	95.7a	0.90a	1.79a	
30% CP-150 %	4	16.5a	0.76^{a}	95.0a	0.91a	1.79 ^a	0.39
30% CP-adj	4	16.8a	0.72a	89.5a	0.94a	1.96a	
45% CP-100%	4	12.9 ^b	0.54a	97.5ª	0.63 ^b	1.66a	

Conclusion – Grow-out

- ➤ Under the conditions of this study, the 30% CP diet outperformed the 45% CP diet with significantly higher shrimp mean final weight and weekly growth
- > The use of molasses did not result in significant differences among treatments in the WQ indicators
- > No statistically significant improvement in shrimp growth was noticed due to the use of molasses
- Since previous study showed good growth (1.9 g/wk) and FCR (1:1) when shrimp were fed the 45% CP diet, it is possible that in the presence of the high protein feed molasses had adverse effect on shrimp growth under the conditions of this study

Conclusions

- ➤ Use of carbon in the form of molasses in the nursery phase was suitable tool to prevent increase in NH₄-N and NO₂-N in the culture water
- The shrimp grow-out tank-system could not be converted successfully into a complete heterotrophic system even with carbon supplementation

Acknowledgements

- > CSREES, USDA Marine Shrimp Farming Program and The Texas Agricultural Experiment Station for funding
- > Rangen Inc., Buhl, ID for donating the feeds used in this study
- ➤ The employees of TAES Shrimp Mariculture Research Facility, Corpus Christi, TX
- Harlingen Shrimp Farms, Los Fresnos, TX & OceanBoy Farms, Clewiston, FL for the nauplii donations
- > West Way, Temple, TX for donating the molasses